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Abstract. Usual Penrose tilings are defined by a set of five phases y, which add up to an 
integer. We study the general case where the phases add up to any number and show that 
these generalised tilings can be obtained with four tiles (two thick rhombi and two thin 
rhombi) with different colourings of the edges. The consideration of generalised tilings is 
relevant for the study of phase distortions, local structural transitions, and therefore various 
defects of the usual tilings. 

1. Introduction 

Since the remarkable discovery in 1984 of A1-Mn quenched alloys whose diffraction 
patterns show up fivefold symmetry (Shechtman er a1 1984), a number of papers have 
tried to deepen the structural properties (Audier and Guyot 1986, Bancel et a1 1985, 
and many others) of these aperiodic crystals (a  term we prefer to quasicrystals). It is 
now understood that these most peculiar symmetry properties are the 313 images of 
the very simple symmetries of a cubic lattice in a 6~ space, after the manner of the 
symmetry properties of more usual incommensurate crystals, which can be described 
in a (3 + n)-dimensional space, for n degrees of incommensuration (Janner and Janssen 
1977). While these degrees of incommensuration bear on the lattice parameters, in 
aperiodic crystals, the absence of translational symmetries takes root in the non- 
crystallographic rotational symmetries which are imposed. In both cases the analysis 
of the projection from the high-dimensional space to real space brings understanding 
to the structural properties of the non-usual crystallographic phase and to the descrip- 
tion of their fundamental modes. Important advances in this direction are the theoreti- 
cal papers of Mackay (1982), de Bruijn (1981), Kramer and NCri (1984) and Duneau 
and Katz (1985). 

An important problem which relates directly to structural properties is the problem 
of topological defects; it is known that in usual crystals defects locally break the 
symmetry group and can be classified by some topological properties of this group 
(KlCman et a1 1977). The same happens to be true in aperiodic crystals with some 
interesting peculiar new features, which were described in KlCman er ul (1986, hereafter 
referred to as I )  in some detail for the case of ZD aperiodic crystals (which exist in 
nature, as demonstrated by Bendersky (1985)), whose structure is nothing other than 
the celebrated Penrose tilings. These tilings were studied in great detail by de Bruijn 
(1981) using algebraic methods and we relied greatly on this analysis. Most of the 
results extend to 313 aperiodic crystals. 
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688 A Pavlovitch and M Kle‘man 

Dislocations in aperiodic crystals are classified by the first homotopy group of the 
torus -r“ ( 3 ~  crystals) or T‘ (ZD Penrose tilings); they can also be made through a 
Volterra process (which reveals the underlying hidden translational symmetries) which 
has to be followed by rearrangement of the structure. Such rearrangements do not 
exist in the usual crystals. In aperiodic crystals these rearrangements are essential: 
they can be analysed in canonical modes of deformation (phasons and structural 
transitions) which have no equivalent in usual crystals (Levine et al 1985). We have 
indicated how such transitions occur in Penrose tilings ( I )  and have shown in particular 
that the consideration of generalised Penrose tilings permit one to extend the types of 
dislocations created (introducing imperfect dislocations) and to describe more precisely 
the rearrangements which occur after the Volterra process. The purpose of this paper 
is to discuss in depth the structural properties of these generalised tilings, which require 
the consideration of a 5~ space. 

This paper is organised as follows. In 0 2 we recall de Bruijn’s approach to the 
Penrose tilings. In Q 3 we demonstrate that generalised tilings require the introduction 
of two new tiles with new colouring rules. Generalised tilings depend on an extra free 
phase y, which takes continuous values. We study how the tilings evolve when y varies 
continuously and how the new tiles arrange in the tiling. Finally we compare some 
properties of the generalised tilings with those of the usual tiling. 

2. De Bruijn’s theory of Penrose tilings 

In 1981 de Bruijn presented an algebraic theory of Penrose tilings. We recall his results. 
Let us consider the arrowed tiles T and t (figure l ( a ) )  and build with them a tiling 

of the plane such that the simple (double) arrows match along the common edges, 
with the same direction. The pattern thus obtained (figure 2 )  has the following 
properties. 

(i)  Aperiodiciry. There is no translation which leaves the pattern invariant. 
(ii) Indeterminacy of the construction process. An infinite pattern is not determined 

by a finite region. Starting from a finite region, there is an (uncountable) infinity of 
ways to continue the construction. 

(iii) Local isomorphism. Different infinite patterns are in some sense equivalent, 
although these are not superposable: any region, however large it might be, belonging 
to a given infinite tiling, exists in any other different infinite tiling. 

Figure 1. ( a )  Old tiles. (b)  New tiles. 
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Figure 2. A tiling of the plane using old files 

(iv) Self-similarity. I t  is possible to associate to any tiling a different tiling whose 
tiles are smaller and in the length ratio 7 (7 = ;( 1 +d)) with the former, and which 
includes all the vertices of the former tiling. 

De Bruijn has demonstrated these properties by using two approaches: 
(1 j the study of a 5-grid associated with a tiling; 
(2) the representation of a tiling as a projection on a 2-plane of the vertices (with 

integer coordinates) of a simple hypercubic lattice built in a five-dimensional space. 
Since our results are extensions of de Bruijn’s results and methods, we present 

these two approaches. 

2.1. Tiling and 5-grid 

An infinite tiling contains strips of adjacent rhombi, with parallel edges. If we join 
the midpoints of these edges by a curve and repeat this procedure for all the strips of 
the tiling, we get a grid that is dual from the pattern we started from. In fact de Bruijn 
shows that this grid could be deformed without topological changes into five bundles 
of straight lines perpendicular to the pentagonal directions Y,( i = 0, 1 ,2 ,3 ,4)  with 

U, = (cos 3i T, sin $i 7). 

In the following we call this deformed grid a 5-grid. The exact definition is as 
follows: any point M belonging to the grid obeys the relation 

OM U, + y, = integer j = 0, 1,2,3,4.  (1) 

If 2 is the complex coordinate of a point M on this grid and if l=exp($i.rr), this 
equation also becomes 

(1’) 

(we will frequently use this complex notation). The y, are real numbers which, in the 

Re[Zl-’] + y, = integer 
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case studied by de Bruijn, obey the relation 

2 yj = integer. 
j = O  

It is clear that the tiling (figure 2) and the 5-grid (figure 3) are in a dual relationship. 
The use of the 5-grid allows us to demonstrate an important property. Let yj be 

five real numbers obeying relation (2) and let us consider the corresponding 5-grid 
and its dual lattice. The ‘colouring theorem’ states that there is only one way to ‘colour’ 
the lattice in t and T tiles, i.e. to arrow the edges of this lattice. 

2.2. Tiling and jive-dimensional space 

Let us consider a five-dimensional space E, and in this space a 2-plane P( y j )  defined 
by 

4 

1 Re 12J(xj  - y J )  = 0 
J = o  (3) 

2 Im 5 2 ~ ( x ,  - y,)  = 0 
J =o 

with 

C y, = integer. 

This space E, is naturally divided into three subspaces P, P’ and D which intersect 
at the point y ;  P’(yJ)  is a 2-plane perpendicular to the two vectors Re 5’ and Im f 
(i.e. P’ is perpendicular to P) and to the direction D; D( -yJ) is directed along (1, 1, 1, 1, 1) 
(see appendix 1) 

POP’OD= E,.  (4) 
The tiling associated with a set of yJ obtains by projecting on P the vertices Q of 

the simple hypercubic lattice of E, with integral coordinates which belong to a strip 

Figure 3. A 5-grid associated with the tiling of figure 2. 
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of constant thickness, limited by the 2-planes P( yJ -&8) and P( y, +&a). This 
construction was also used by Duneau and Katz (1985) and Kalugin et a1 (1985). We 
shall also have to consider the projections Y of the vertices Q on the subspace P’O D 
complementary to P in E5. In particular, the projection of only one of the Q on P’O D 
can inform us on the whole Penrose tiling associated with the strip. We come back 
to this important question later. 

The 5-grid itself can also be visualised in E5: it  is the intersection with P of the 
reticular 4-planes of the simple hypercubic lattice perpendicular to the canonic basis. 
The vectors U, are in P, whose natural basis ( a , ,  a * )  has components {Re 5 ’ )  and {Im 5’) 
in E5 (see appendix 1). This geometrical construction of the 5-grid was extensively 
used in I for the classification of defects. 

3. Generalised tilings 

Here we study in detail, in the de  Bruijn way, the case where the five real numbers 7, 
d o  not sum to an  integer. This investigation yields a non-trivial extension of the 
‘colouring theorem’ and introduces new tiles. 

3.1, Extension oj’ the colouring theorem 

Let us consider a generalised 5-grid (Z,=o,4 y, # integer): we prove that the associated 
tiling can be coloured using t, T and two new tiles t‘ and T’ (figure l (b ) ) ,  with the 
usual matching rules. 

We associate with every mesh of the 5-grid five integers K,( j = 0, .  . . , 4 ) :  

K, (mesh) = K, (2-mesh)  = [Re(2{-J)+ y,l ( 5 )  

where [a1 is the smallest integer larger than a. We note that K, changes by one unit 
when we cross a line of the 5-grid perpendicular to the direction U,: in the positive 
sense K, + K, + 1; in the negative sense KJ + K, - 1. 

The K, are constant for a given mesh. In order to distinguish between the points 
of coordinates 2 of a given mesh we introduce five real numbers A, ( j  = 0, .  . . , 4 ) :  

AJ(Z)= K, (Z) - (Re(Z .  l‘-’)+y,). (6) 

It is clear that 

O < A , < I  ( j  = 0,4). 

When the 5-grid is regular (no more than two lines crossing at one point), only two 
Aj can be equal to zero for a given 2. We have 

A A / A  A \  

which yields 
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when 

y = C y, = integer 

Y < c K, (2)  < Y + 5 

Klkman 

so that Kj(Z)  takes only four values: 

y + l ,  y + 2 ,  y+3 ,  Y+4. ( 9 )  

Otherwise, it takes five values 

Consider now the tiling associated with the 5-grid. It is made of points with coordinates: 
4 

Z =  (Kj-Y,)L" 
j = O  

where each vector K corresponds to a mesh in the 5-grid. We call the 'index of a 
vertex' the quantity 

4 

K = C  KJ.  
J - 0  

The colouring rules are obtained in two steps: we first define the double arrows; 
then a lemma will lead to the distribution of the simple arrows. 

Let us begin with a simple remark; consider a line of the bundle Fo perpendicular 
to yo,  and let us index the meshes situated to its left. We find that K + K + 1 when 
we cross a line belonging to the bundles F, or F2 and that intersections with the lines 
of bundles F,  and F4 alternate (the same holds for F2 and F3) .  The index at the left 
of the considered line can take only three values. 

Because in the 5-grid the index takes in general five values, there are therefore two 
types of line: the lines of type 1 at the left of which the index takes the values [ y l ,  
[ y l  + 1, [y1+  2 and the line oftype 2 where the index is equal to [ y 1 + 1, [ y  1 + 2 ,  [ y  1 + 3. 

Let us now introduce the double arrows, using de  Bruijn's method: for lines of 
type 1 we put double arrows on edges which are crossing this line from vertex with 
index [ y l +  1 to vertex with index [ y l  and  from vertex with index [ y l + 2  to vertex with 
index [ y l + 3 .  For lines of type 2 ,  the result is analogous: the double arrows go from 
[ y l + 2  to [ y l +  1 and from [ y l + 3  to [ y l + 4 .  

Finally, we put simple arrows on all the other edges of the tiling and direct them 
towards the vertex which contains the obtuse angle of the tiles incident to the considered 
edge; this is done in an  unique way, since according to the lemma proved in appendix 
2 (and which generalises de  Bruijn's lemma), the new tiles T and t' (figure l ( b ) )  as 
well as the old tiles always join with their obtuse angles at the same vertex. 

We note here an  important feature: the new tiles T' and  t' are always at the 
intersection of two lines of different types, while the old tiles T and  t are at the 
intersection of two lines of the same type (figure 4). Figures 5 ( a )  and  ( b )  show some 
tilings of the plane with y f integer. We note that the tilings get naturally divided into 
islands made of old tiles (which could eventually be continued to infinity), separated 
by walls of new tiles arranged along lines of the second type. The diameter of those 
islands scales like 1/y. This is most visible in figure 6 ,  which is a tiling extended to 
3000 tiles. 
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lo ) 

I ‘  
I b l  

Figure 4. ( a )  Old tile at the intersection of two lines of the 5-grid of the same type. (6)  
New tile at the intersection of two lines of the 5-grid of different types. 

3.2. Five-dimensional representation 

As already noticed by Duneau and Katz (1985),  whatever the value of I; yt might be, 
the projection V on the complementary of P in E5 of the points that projects on the 
tiling is included inside the projection on this subspace of the hypercube strip centred 
on the point of coordinates y which is a rhombic icosahedron I (figure 8 ( a ) ) .  The 
projection V, for y = integer, is obtained as the cut of I by four 2-planes P’(  K,) (parallel 
to the plane P‘(y,) defined above), with I; K, = K taking one of the four values y +  1, 
y + 2 ,  y + 3,  y +4,  passing through the point K = ( K O ,  . . . , K 4 )  of the SD space. Each 
subset consists of a pentagon V,;  for example VI (for K = 1) has vertices with complex 
coordinates 1 ,  5, 12, 5’, 14, in this plane, and any point Y = I; AIL2’ in V, corresponds 
to a vertex of index I; K, = 1 ,  whose coordinate in P is I; ( K ,  - -y,){’. De Bruijn shows 
that the nature of the vertex (i.e. to which of the eight types of vertices shown in figure 
7 it belongs) is entirely defined by the location of Y in V, (figure 8 ( b ) )  which is 
partitioned into polygonal subregions corresponding respectively to vertices S, K and 
Q. The V, are densely filled by the projection of points of the hypercubic lattice. 

Consider indeed a vertex of type Q in the case X yz = integer. Such a vertex only 
appears when its index is equal to y +  1 or y + 4 .  Its projections on P(K, )  and P‘(K,) 
are: 

In real notation: 

where v, = (cos$ri ,  s in$r i  and p, = (cos$ri ,  sin$.rri). (Figures 9 ( a )  and 9(b) ) .  In 
figure 9( c )  we have redrawn V, (assuming that K = y + 1 )  and drawn V2 which contain 
the projections of the neighbours of Q in P, since their index is y+2 .  The hatched 
region represented in figure 9 ( c )  has the following meaning: if a vertex of the tiling 
projects on it we can say that it will be a Q type vertex. 

All these considerations generalise to the case where Z,=,,, yt # integer. We then 
get the partition of figure 1 0 ( a ) - ( e ) ;  there are now five subsets V, corresponding to 
the five values of the index 1 y l  . . . [ y l + 4 ,  each of them divided into regions corre- 
sponding to some vertex of a generalised pattern. There are now 28 new vertices, 
drawn in figure 11. Five of them have a hand; hence if we add their chiral image, 
there are in fact 33 new vertices. 
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Figure 5. Generalised tilings for ( a )  Zy, =0.1, ( b )  Zy, =0.2, ( c )  Zy,  =0.3, ( d )  Zy, =0.4, 
( e )  Iyj  = 0.5. 500 tiles approximately are in each tiling; the new tiles are shaded. 
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Figure 6. Generalised tiling for Z y j  = 0.1 with approximately 3000 tiles. Note the division 
in islands of old tiles. 

Figure 7. Old vertices: the capital letter indicates the topology of the vertex (defined by 
the succession of angles between bonds), the upper index is the number of bonds and the 
lower one the number of double arrows. we have kept as much as possible de Bruijn’s 
notation for the capital letter. 

3.3. Densities of tiles 

Let us research how the lines of a given type (1 or 2) are located in a bundle Fi, along 
the direction vi. It is easy to prove that the quantity 

ti = [ y +  K i / 7 ] +  [ - K , / T ]  (13) 

takes the values ti  = 1 on a line of type 1 and ti = 2 on a line of type 2; Ki  is an integer 
which increases by one unit from one line to the next one along vi. One can see that 
the lines ti  = 2 are located quasiperiodically, with three periods which are three 
consecutive numbers of the Fibonacci sequence. More precisely, when T~ < l/ y < T ~ + ’  

the periods are fk, f k f l ,  f k + 2 ,  where 

1 fk =-[Tk+*+ (-T)-k]. 
T + 2  

When 1/ y = T ~ ,  there are only two periods fk and fk+, . 
The densities of new tiles vary quadratically with y. We have explicitly 

t = (2- T ) [ 2 y 2  - 2 y +  11 t’ = 2(2 - T ) [  - y 2 +  73 
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lo1 

I 1 

( e  I 

Figure 8. Projection of vertices on POD. ( a )  Rhombic icosahedron in P O D  space, 
centred on y ,  ( b )  V , :  index K = y +  1 ,  ( c )  V2: index K = y + 2 ,  ( d )  V,: index K = y + 3 ,  
( e )  V,: index K = y+4.  



Generalised 2D Penrose tilings 697 

i c  I 
Figure 9. ( a )  Vertex Q projected on P from some vertex of the hypercube, with bonds 
joining it to its neighbours, all belonging to the strip. ( b )  Projection of the same set in P :  
the vertex itself belongs to P( y t I ) ,  while the vertices at the end of the bonds belong to 
P'( y +  2 ) .  ( c )  V,  with vertices 1. {, i'. i' [' and Vz with vertices I + i, 1 - [', j' + [', i3 + L4, 
['+ 1. I f  the considered Q belongs to V , ,  its neighbours are in V 2 .  The shaded area 
represents the projection of a iQ type vertex. In fact, if one crossses the right boundary 
of the shaded area, one gets a :K vertex. 

T = ( 7  - 1 ) [ 2 y 2 - 2 y +  1 1  T ' = 2 ( T - 1 ) [ - y 2 + y ]  

with t +  t ' +  T +  T ' =  1. 
A more detailed accouht of these properties will be given elsewhere. 

4. Discussion and conclusion 

The properties of the tiling for y # integer are worth comparing to those for y =integer, 
recalled in the introduction. 

( i )  Aperiodicity. This property holds whatever y might be; the demonstration is as 
in de Bruijn for y =integer, mutatis mutandis, and will not be repeated here. 

(i i)  Indeterminacy of the construction process. Suppose we have constructed an 
arbitrarily large but finite region R in a tiling defined by a set of yl .  Call G the 
corresponding region in a 5-grid; G is not unique. Let d be the smallest distance 
between a point of intersection in G and the straight lines of bundle Fo. Then the 
transformation 

Y & =  YO+ d / 2  and r : = x  
leaves R unaltered but modifies globally the tiling (with or without introduction of 
tiles). In practice, any region R can be extended in infinitely many ways to an infinite 
tiling, with yI  varying in certain ranges fixed as above. 

(iii) Local isomorphism. This property also extends for y # integer: any region R 
belonging to a given y tiling exists in any tiling with the same y but different y,. The 
demonstration requires the consideration of the projection of R in the V and goes 
along the same lines as for y = 0 (de Bruijn). 

(iv) Selfsimilarity. As soon as y # integer, the associated pattern does not possess 
stricto sensu inflated nor deflated patterns. For instance, in the case of the deflation, 
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I @  
I -i 

0 
I 
I ! 

I i 
Q 

i i ~ .. ~ 

i - ~~- 1 i I 

I I 

Figure 10. Partition of P in V, for yf in teger .  ( a )  y=O. l ,  ( b )  y=O.2, ( c )  y=O.3, ( d )  
y = 0.4, ( e )  y = 0.5. Corresponding vertices are indicated in some domains. 

the associated pattern with tiles 7 times smaller (obtained by an extension of de Bruijn's 
method) will not contain all the vertices of the former pattern. The reader is referred 
to Katz and Duneau (1986) for a demonstration of this property. De Bruijn's rule 
states that the y: of the deflated tiling are 

Y; = r j + l +  Yj + Yj-1 

y ' = 3 y .  

i.e. 
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Figure I t .  New vertices . Those whose capital letter have dots lack a mirror plane; their 
enantiomer is therefore also allowed. 

Appendix 1 

Let ( l o , .  . . , I , )  be the canonical basis of ZR’, and consider the new basis: 

1 
u o = - ( l ,  1,1,1,1) d3 

d2 
d3 
d2 

U -- (Im 5’),=0.4 2-v5 
d2 
d3 
Jz 

4-d3 

u I  =-(Re 5’),=0,4 

u3 =- (Re 52’),=0,4 

U -- (Im 12’)]=0,4. 
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This is an orthonormal basis. The transfer matrix from ( f l ) r = 0 , 4  to (u,),=0,4 can be 
written as 

cos$? cos$l  cos$, cos:, 

cos:n C O S 3 T  COSS, cosgsr 
sin:.rr sin%, sin%, sing, 

8 2 

8 2 

The spaces spanned by uo, ( u l ,  u2) @ ( u 3 ,  U,) are globally invariant under fivefold 
rotation about the uo direction. 

Any vector a of coordinates ( a o , .  . . , a4) in ( l r ) , = O , 4  is projected along cyp in P 
spanned by (U,, u2)  as follows: 

If one identifies U, and u2 as the real and the complex axes of the complex plane, up is 

u p = $ (  1=0,4 1 ai { ' )  or a p = s (  f i  ~ = 0 , 4  alpJ) .  

In the case where we restrict to the hypercube P ( 0 ) :  

2 aj=o. 
J =0,4 

We have the inverse relation 

ai = Re( a,{-'). 

The same kind of relation holds for P' spanned by ( u 3 ,  u4) 

which gives 

a .=- aj5" or up, = - 6 j =0 .4  

where 

u,(cos $.rr, sin g i r )  and p,(cos $v, sin :in). 

U, (respectively p l )  is the normalised projection of l, on P (respectively P ) .  

Appendix 2 

The aim of this appendix is to prove that the rule that introduces simple arrows does 
not lead to any inconsistency. Let us restrict to a line of the bundle Fo perpendicular 
to yo. Assume that this is a line of type 1. We will prove that the arrow which crosses 
this line is simple only and only if it is situated between intersections with lines of 
bundles Fp and Fq with p + q  odd. 
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r< 

Bundle 1 

Bundle 3 

/ 1 igl +l 

Bundle 2 

Figure A l .  

Consider ( p + q )  even. All the possible situations are those of figure A l ( a ) - ( d )  
which shows that the considered arrow is double. Consider for example figure A l (  a ) ;  
the index on the left below the F2 line and above the F4 line can be only [ y l  (the 
index takes only three values [ y l ,  [ y l +  1 and [ y l + 2 ) .  

Appendix 3 

In this appendix, we describe the projection on P’OD of points of Zs which project 
on the tiling in P. 

Consider a subject of IR x C: 

Let (KO,  K4) be a point of Z5 .  

and only if 
We show that (K,),=,, projects on a point of the tiling associated with ( 1;)J=o,4 if 

(A3.1) 

Suppose (Kj)j=0,4 projects on a point of the tiling in P. Then there is Z with 

Kj = k j ( Z )  = [Re(Zl-’)+ y j l .  



702 A Pavlovitch and M Kle‘man 

Let 

AJ = +KJ(  Z) - Re(ZL--’) + yJ 

then 

C ~j = C ( K j  - Y J )  

and 

1 AJ12J = C ( KJ - YJ)62J’  

Hence (A3.1) is true. 
Suppose now that (A3.1) is verified. Then there is (AJ) ,=o,4  such that 

C ~j = C (Kj  - Y J )  

and 

1 AJ62J (KJ  - Yl)C2’ 

which means that the vector ( K ,  - AJ - yJ) E P(0) .  
From appendix 1, there is a 2 such that 

K,-AJ-yJ=Re(Z(-’) 

which shows that ( K , )  belongs to the tiling. 
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